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Abstract

This investigation is concerned with the development of a two-body distribution func-
tion in a plasma for use in a kinetic equation for the one-body distribution function. The
kinetic equation is obtained for a uniform plasma for those circumstances in which the
time dependence of higher-order distribution functions can be assumed to occur within
a functional dependence on the one-particle distribution function. The conditions of
validity for this functional-dependence assumption are discussed. The resulting inter-
action term is new in the sense that it contains no divergent integrals requiring cutoffs,

and it may be considered accurate to first order in (e 2 /kTXD). The interaction term is

composed of two parts. The first is a Boltzmann collision integral with a Debye-shielded
interaction. The second term is due to the deviation of the shielding cloud from a Debye
shield and is the Fokker-Planck form, the coefficients of which are finite and well-
behaved. Because of its form, with a convergent collision integral and convergent
Fokker-Planck coefficients, the solution may be considered as a joining of the previous
solutions to this problem.
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I. THE NATURE OF THE PROBLEM.

1. 1 INTRODUCTION

In the description of the evolution of a fluid, the interplay of the properties of the

interaction and the density determine whether the fluid is a liquid, gas or plasma. If

at the interparticle distance the motions of the particles are strongly affected by the

forces that are due to other particles, we consider the fluid a liquid. Forces that are

weak at the interparticle distance will give rise to fluids described as gases or plasmas.

If we consider forces that fall off at large distances to be r - a , we may distinguish gases

and plasmas as a > 2 and a < 2, respectively. For gases the effect of the volume ele-

ment in a summation over particles is not enough to counteract the r-a -decay of the

force. The summation will receive its greatest contribution from near particles. In

a gas of this type, for a density that is sufficiently low that particles interact only

infrequently, we are led to the concept of a two-body collision and a Boltzmann gas.

For a 4 2, the r -increase of the volume element is sufficient to increase the effect

of the more distant particles. In particular, for Coulomb interactions in a plasma the

volume element just offsets the r-2-decay, and the concept of a collision becomes vague,

since many particles interact at once.

Kirkwood and Poirier 1 show that for a plasma in equilibrium the effect of the Coulomb

potential is modified by the screening of other particles and an effective potential is

established. The effective potential can be well approximated by the Debye potential,
e e The Debye length, kD  kTe D 2T for n particles per unit volume, becomes

4yrne
a new range of interaction. As we shall see (sec. 1.2), plasmas of interest will be of

such a density that they will have many particles within a radius XD; nX 3 is a large num-

ber. We are still faced with many particles interacting at once.

Because the information that is eventually desired about a gas will not depend on the

detailed motion of particular particles, but rather on an average over many particles,

it is convenient to introduce distribution functions. Thus we introduce the distribution

functions

FI(x1 ;t), F 2 (XlI x 2 t)2 . ,. Fs(x 1  ... Xs ;t),

where the subscript denotes the number of particles in the argument; t, the time; and

x., the 6-dimensional vector __i'_}" We shall assume that the F are invariant under
, "

an interchange of particles, so that the particular x i appearing in the arguments are

simply labels. The F may be defined as follows: The function- F (x, ... X) dx

•.. dx s is the probability at time t that the particles 1 ... s will be found, respectively,

at x 1 , ... x s within dx I dx s . We shall take the relation between the distribution

functions to be

F s ... X;t) FV-_ F(Xxk, t) dXk. dXs+ k > s,



where the volume V that is available to the gas is inserted in both cases to allow a

smooth passage to infinite volume. For each dx i , the integration is over all momentum

space and the volume V.

There is one more concept that will be of interest to us. If the motion of the s par-

ticles can be considered statistically independent, we have

s
F s(X1 ... Xs) = T-[ 1l(x i), I

i=l

In this report we shall suppress the time variable t when it is not important to the

relation considered. We shall refer to motion for which the property (1) holds as uncor-

related motion. Motion for which (1) does not hold will be referred to as correlated

motion.

The distribution functions have final interpretation when used to evaluate the average

or expectation value of some mechanical property As that depends on s particles. We

interpret this property as

<A% = 5 A (x1 , .. .x ) F (x1 l ... x) x ... dx, (2)

where we have used the fact that the distribution functions are normalized as

V F,(x1 ) dxl = 1. Obviously, we are primarily interested in s = 1 and s = 2.

Upon introducing the distribution functions, we are interested in their equations of

motion rather than those of individual particles, although the two are closely related.

One of the first successes in this direction was Boltzmann's equation for the one-particle

distribution function for dilute gas of short-range potential.

OF I(x )  8F I(x 1)

at 1

- n S PS ) V 2 -V I{F(4I, I) FI$,_ 2 )-F (pI, 2 ) FI( 2 , 2 )} d-adad .

(3)
Here, a is the collision impact parameter and and are the momenta that the par-

ticles must have had before the collision, given that their coordinates are now x1 and

x . We shall consider no external force.

It may be recalled that Boltzmann's derivation depended upon a long free path between

relatively quick collisions. As an approach to the problem of plasmas, this equation

with a modified Coulomb potential was used by Spitzer and Hirm.Z The collision integral

with a straight r- -force diverges at long distances. Using the known fact that at equi-

librium the effective interaction is the Debye potential, they cut the integral off at XD .

Another approach was originally proposed by Vlasov 3 and solved in detail by Landau.4

This emphasized the Coulomb nature of the interactions by considering the force on a
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charge to be given by the gradient of a potential whose source is FI(Xl) dpl. The

equation for F becomes

aF 1 (x1 ) OF I(x 1  e e2 OF I(x 1)~ F I(x Z) dx (4
S 1 "ql-qZ

As we shall see later, this equation is a first step but does not include or account for

particle correlations.

A third approach to the problem may be made through a Fokker-Planck type of equa-

tion for F 1 ,5

a Fl1(X 1 I OFl1(xl1 a 0 - B OF 1F llI

at + v 1 = OFi(X) +  '(5)
1 aq -a(x)+1 1

where D and B are functionals of F The form of this equation is derived by assuming

that the particles undergo a large number of small deflections - a condition violated by

Coulomb particles undergoing a close collision with large momentum transfer.

Before the Fokker-Planck equation can be of use, we must obtain the coefficients

from considerations of the interactions. One method, described by Allis, 6 is to expand

the Boltzmann collision integral in terms of small deflections and obtain the Fokker-

Planck form of equation. This, however, necessitates using the collision integral in the

region in which its accuracy is most suspect - long-range interactions or grazing col-

lisions. Another method described later 7-11 uses the two-body distribution function

under the assumption that the two bodies never get close together or experience an inter-

action that is strong compared with their kinetic energy. As discussed by Balescu, 7 the

coefficients of this equation have great intuitive appeal. However, integrals in them

diverge at short distances because of a violation of the initial assumption; in this report

we shall resolve this divergence.

One more fact should be noticed about these three equations. On the right-hand side

of the Boltzmann, Vlasov, and Fokker-Planck equations we have functionals of F 1 only.

The future of F is determined by its present value, but not obviously; we might, for

example, find that the equations for F 1 , F2 , and so forth, are all interrelated in a set

of simultaneous equations. As it is, the equation for F and the higher-order distribu-

tion functions must, in some sense, be trivial in the time variable so that they can be

solved immediately with the result of a single equation for F 1 . This occurrence will.

be discussed in great detail in section 2. 1.

The purpose of this report is to derive a kinetic equation for F 1 . We shall derive

this equation by starting with the general Liouville equation for the plasma and then

examining the circumstances under which a kinetic equation for F can be assumed to

exist. For these circumstances we shall obtain an equation for F to first order in the

small parameter (e /kThD). This will be an improvement upon the attempts mentioned

3



above in the sense that it will contain no divergences in those terms corre-

sponding to interactions with other particles, that is, the right-hand sides of

(3)-(5).

1.2 STATEMENT OF THE PROBLEM

Several authors 8 - 10 have used the Liouville equation for the distribution function

in the phase space of 6-N dimensions as a starting point for the discussion of the evolu-

tion of a gas of N particles in a volume V. This distribution function, DN(X I , • • • xs;t),

is assumed to be symmetric under the interchange of any pair of particles. The

Liouville equation is then

8D N H0 + N ij;D . (6)Lt N]
i<j

Here, the brackets are Poisson brackets,

N

and the kinetic and potential energies are

N 2
Ho = Pi
HN T

i=l

and

2
e

Ti-- jl

For our purposes throughout this report we shall assume only Coulomb interactions and

identical electrons of mass m and charge e imbedded in a uniform background

of opposite charge. The net charge will be taken to be neutral. The points to

be investigated may be studied with this idealized model, without the compli-

cation of different particles.

We define the reduced distribution function for s particles

Fs(XI .... X =VF _ s  D... dx N , dxfF 8 (8)

where the factor V N - s is introduced to allow a transition to infinite volume.

We shall also have use for the following identities:

4



1 8DN  8F 5

vN-s dtS+l . N=

1N.. H 0H;DN1 dx+l [ H;FS]V N
- s S o N~ + ... SS1

N (9)
N-s ij;D dxs . dxN

Vs [Ni] ;D]d

-=; ij;FI + v ''']dx

<j 1j=s+l i=l

By using the symmetry of DN under interchange of particles, the sum over j consists

of identical terms so that the last identity may be written....~

N N

V Ns J lij N] S+l .. xN

ai i j;s D + NVS{ is+;Fs+ 1] dx 5 +i. (10)

Integration of (6) over dx ... dxN and use of (9) produce

at. EHs]+[~ jij; F] + NV t Lis+l;Fs+] dx +1' (1 1)

Throughout this report the argument of the function F s is suppressed when the meaning

is clear.

For fixed s we may pass to the limit of infinite volume and infinite number so that
N remains constant. This replaces with n. For spacially nonuniform plasmas,

N
n is not a density in quite the usual sense, but is the limit --

The introduction of n gives (11) its final form. The meanings of its terms are clear.

The left-hand side and the first two terms on the right-hand side constitute the Liouville

equation including interactions for the s particles under consideration. The integral

term represents the contribution to the rate of change of F s which is due to the inter-

actions with the rest of the particles.

In order to approach the analysis of the equations (11), we shall estimate the size of

the terms. It will be found that under certain circumstances one term is small and thus

gives rise to the possibility of a perturbation expansion. We assume a plasma that is

near enough to equilibrium that we may define a shielding distance XD =Vkr/4rne7, a

plasma frequency wp =,Vj 4 irne/m, and a characteristic velocity V = kT/Tm. By using
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these as units, the sizes of the various integrals and derivatives can be estimated. The

change of coordinates T = W pt, p = r/KD, and u = v/V in (11) will make, for the average

particle, each of the integrals and derivatives of order one. The size of each term will

be given by the following coefficients

Wp, V/XD, e /mVb , ne XD/mv

which are the ratios

21, 1, 1/n D b  1

Here, b is the distance between the two particles under consideration. The last three

terms are the three sums in (11), and the coefficients above simply represent their

magnitudes. In particular, in the third term there will be a different b for the sep-

aration of each pair of particles; the term for each pair is subject to the analysis

given below.

A requirement that the third term be small implies that b >>/eZ XD/kT. The

solution of (11) has been discussed by several authors 8 " 1 0 for the situations that

satisfy this requirement for all pairs. The process has been. to assume that all

of the s-particle interaction terms are small and to assign to them an expansion

parameter g that is later set to one. The terms designated by gr will be of order

(e2/kTkD)r. Then F s is expanded in g as a perturbation expansion. This results in

zero and first order in g.

8 o ]+ n i ;F,;F ] dx+ (12)at s sJ n  S~l + ds+l

and

[Hts -Fs's + [i ij;F + n { is+l;Fs+ dxs+1 . (13)

The derivation and solution of these equations will be discussed; of more interest

to us now is the general form of the solution. We shall see that for a uniform plasma

F and F may be reduced to
s s

F 
0  =sFs  T F- FI p i }

1=1
(14)

sFl  TT Fl F ? p
s ~ k~i, j 1(k .i j i

Here, F is the solution of the equation
2
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F2(X 2) [HO;F (xI' x )+ [412 ;FI(pI) F V)at 1 2'2

+ n X1;(l) Fl( 2  _ 2;Fl(2 F2I(XlX • 15
+ f S[+i 3 ;i 1 ) 2(x 2 , x3 )] + [+2 3 F(P 2 ) F 2 (x 3 )]}. d~x 3 . 15

and to first order in g
8F I(; I ) I

at .= n Li ;F(x I x 2 )] dx2 . (16)

Equation 15 has been solved under the adiabatic hypothesis defined in section 2. 1. When

this solution is substituted in (16), the final equation becomes

aFl(Pl) n [ i. t n ([ . 1i

at = n i 2 (Xlx) = n x [4Jfz(XX 2 ) d2

16w 3 ne 4  dd a 6(" (V 1 -V 2 ))

m(2w) 3  a 1( 2 ) 2

k 2 + 2 __ _d_ 2
k (V-V 2 )

- a - F(I)F 1 (P 2 ), (17)
Vl aV )

where, under the adiabatic hypothesis,

F1(X1 , x ) - f(Xl, X ). (18)

For definiteness, we reserve a special symbol for this function and refer to it as the

large-separation solution.

In (17) Z is the Fourier-transform variable corresponding to (r ). This inte-

gration diverges logarithmically for large values of Iki corresponding to small values

of i71r- 2 1. As mentioned previously, this divergence occurs because we assumed that

#12 is small in the derivation of (15). The divergence occurs in a region that violates

this assumption. To remove the divergence, one should allow for the possible mutual

approach of particles 1 and 2 in (11).

In the classical gas of electrons considered, one never encounters the problem of

two particles close together because of the mutual repulsions. This fact should be borne

out in the solution of the set of equations (11). If discrete positive charges had been

included, real problems might have occurred because of the attractive potential. The

occurrence of bound states and the effects of very fast electrons would require analysis

that would go far beyond the techniques employed here. In this investigation we shall

study the effect of close collisions on the two-body distribution function and shall thereby

7



remove divergence in the classical problem of Coulomb repulsions.

In the past this divergence has been handled by cutting off the integration in (17) at

kT/e 2 , the value corresponding to the distance of average closest approach. Since the

dependence on the cutoff is logarithmic, the final results are not expected to be much

in error from a numerical point of view. However, it is of interest to see what happens

to the distribution function for close collisions and to see how accurate the method of

cutting off may be.

In order to proceed let us return to the arguments that led to the assignments of

orders of magnitude to the various terms in (11). We found that the requirement that the

pair interaction term be small implied that the s particles are mutually separated by

distances b >> e2XD/kT. Let us now imagine a set of concentric spheres, of possible

separation of two particles, with radii e 2 /kT, 'Ve'-IjkkT, and XD . The radii are in the
constant ratio -/kTk D /eZ = 1/4nnD. For a wide range of plasmas the quantity 4 nk DkTXDe D16 -3
is much larger than one. For example, if kT = 100 ev and n = 10 cm , then

41nk D 105. These spheres are quite distinct, and they are useful in visualizing the

process of interaction.

Let us label the spheres I, II, and III in order of increasing radii. The volume inside

sphere I may be considered forbidden to the particles because eZ/kT is the distance of

closest approach for the particle of average energy kT. Particles are allowed between

spheres I and II; but in this region the potential energy is larger than the average kinetic

energy, and thus the pair interaction term may not be considered small. The solution

may be considered correct from sphere II outward, and an evaluation of (17) shows that

the result is exponentially cut off outside XD' in agreement with the Debye theory. In

order to correctly handle the integral occurring in the equation for F 1 , we must consider

the possibility of particles occurring between spheres I and II.
Consider the number n(eZkD kT)3/2 , the probable number of particles inside

3 3 1/2sphere II In terms of 4 wnk D this number is (nX D) -l, which is small. We may argue

from a strictly probabilistic point of view that it would be correspondingly even more

unlikely that more particles should be inside this sphere. We are led to the concept of

a "close collision," one in which two particles experience a short time interaction within

sphere II. In line with the foregoing argument, we shall assume that the close collisions

are binary and shall ignore the possibility of three particles occurring within this short

range.

The analogy with the Boltzmann gas should be mentioned. For the Boltzmann gas

we consider free particles undergoing binary collisions. For the Coulomb case we real-

ize that the particles interact over a long range, but we use the fact that the strong inter-

actions occur only in binary types of events. In both cases those collisions that cause a

large change in momentum are assumed to be binary.

We shall carry out the solution to (11) under the assumption that the interaction poten-

tial of one pair of particles, 1 and 2, is not necessarily small, while all other pairs are

assumed to be small. The Hamiltonian to zero order for s particles, including 1 and 2,

8



will be H+ 1Z" Sets of particles not including l and 2 will be assumed to be outside

a range corresponding to a close collision; their zero-order Hamiltonian will be H°

and their solutions will be assumed to be (14)-(17). Whereas earlier treatments have

assumed a gas of electrons experiencing entirely grazing collisions, we assume that

one pair really collides with no limitations. This assumption is not as restricted as it

sounds, since we are in reality saying that there are many mutually separated pairs in

close collision.

This entire procedure will not get rid of all divergences, since in the equation for

the two-body distribution function we encounter terms of the form

S [%1 3 ;F 3 (x I x Z x3 )] dx 3 . (19)

By the above-given procedure we correctly allow for 4s2Z, but not the approach of 1 and

3 - the combination would entail a three-body collision. In section 3.2 it will be seen

that this divergence can be circumvented in a plausible way. However, it is reasonable

to expect that, if we kept this integral and merely cut it off, the dependence on the cut-

off in the final equation for F1 would be much weaker than the logarithmic dependence

found in (17) because we have carried the problem to one more step of accuracy.

Section 2. 1 will be devoted to a discussion of the methods, operators, and notation

to be used in solving these equations. Section 2. Z will include, as an example, some

discussion of the equations for the large-separation solution. In section 2. 3 we shall

modify the ideas of section Z. 2 so that they will be applicable to the present problem.

Section III will be a discussion of the actual problem, and Section IV will be a discussion

of the results. Some of the material contained in section Z. 1 is taken from a book by
Bogoliubov but is included here since it is not usually used.



II. THE METHOD OF APPROACH

2.1 THE ADIABATIC HYPOTHESIS AND ITS IMPLICATIONS

In order to study the methods to be used in the solution, introduce the Hamiltonian

for the kinetic energies and mutual interactions of s particles.

s

Hs = Hs + I ij"

i<j

For simplicity, we assume that there is no external field. The generalization is con-

ceptual immediately, since these are one-particle processes. However, the resulting

particle trajectories are very difficult to solve. One would not expect that the evolu-

tions of correlations are much affected by the presence of weak external fields; thus

this model is useful intuitively for the more difficult case. The strong field, in which

the external field exerts more force than most of the interactions, would be complicated.

But for this simple case even the most simple equation, the Vlasov equation (4), is not

understood, since its nonlinear character becomes important.

For the whole system the Liouville equation,
8 DN (0= [HN;D, 

(20)

has as a formal solution

DN(x ... xNt) = SN D (X1 ... xN;0). (21)
Nl N _-t N 1 N

Here, the operator S _t operates on the particle coordinates x I ... xN and projects them

backward in time t seconds on the basis of the paths given by their Hamiltonian; that

is, DN flows like an ideal fluid in phase space.

Note the identity for an arbitrary +:

a S-t(XN ..x N, t)= [HN, st*(xl ... xN, t)] + St j8 *(Xl ...N xN_ t). (22)

This follows from the definition of SN and the fact that

8tt

Another property that we shall need in this investigation is the solution of equations

of the form

8t *(Xl .... xN;t) [HN;*(xl ... xN;t)] + f(xl ... xN;t)" (24)

Let +(x I, ... xNt) S Nx(x 1 , ... xN;t); then, using (23) and (24), we obtain

10



SN 8 (ix x0
S-t X(x1 .... xN;t) = f(x1 ,x 2 ... xN' t).

Multiplying by SN and integrating, we obtain
t

X(x 1, .... x;t) - X(x 1  IxN) = SNf(xl .1 XN;r) d-r. (25)

In (25) we use the relation

S NSN = S N -o 1

o _0 -0 o 0

and consider it the inversion property of the operators. Finally, multiplying by SN

and resubstituting *, we have

N ft NNT*Ix... xN;t) = S t+(xl ... xN;0) + Cd S t_,lfl 1 ... XN;T) .  (26

In (26) the first term on the right-hand side is the contribution of flow in phase space

and the second is the effect of the source.

Now let us examine the exact equation for F 1 ,
OF 1(x 1) =F [H1;F(x + n $ [, 1 2 ;F 2 (xl,X 2)] dx 2 . (27)

This is obtained by integrating the Liouville equation and is equivalent to it. To use F 2,

we must solve the equation for F 2 , which involves knowing F 3 , and so forth. The advan-

tage of this chain over the original Liouville equation is that, if we can break the chain

in a physically sensible way, we can obtain a closed set of equations and know the pre-

cise approximations made in departing from the full Liouville equation. The problem

is to perform the break in a manner that will balance the physical and computational

reasonability.

Now look at (27) in the light of the fact that, as mentioned in section 1. 1, the var-

ious forms of kinetic equations for F have one thing in common - they can generally

be written

8F1 (x1 )

at -A1 (x1 ;FI). (28)

Here, A 1 (xl;F1 ) is a functional of F 1 . The importance of this is that the entire time

dependence of the right-hand side of (28) lies inside F 1 and depends only upon the current

value of F 1 . This fact is implied by having a kinetic equation for FI: that its present

value is sufficient to predict its future.

If (27) is to be of the form of (28), then F 2 must be such that

F 2 (x1 , X2 ;t) = F2 (x 1 ,x 2 ;F 1 ). (29)

If (29) is to hold, it must be true for all s P 2 that

11



Fs(X 1 Xs;t ) = Fs(x i ... xs;Fl). (30)

Bogoliubov has shown I Z that for a Boltzmann gas this is a very good assumption in
that any initial F s that violates (30) will relax to the form (30) in a collision time that is

very short compared with the characteristic time of change of F I . Thus it is safe to

assume that F s is of the form (30).

This whole argument breaks down for a plasma, particularly one that is not spacially

uniform. In this case the collision time is of the order XD/V =Vm/4une , which

is the characteristic time of change of F I for a nonuniform plasma. However, to get

a kinetic equation of the form (28), one is forced to take (30) as an assumption and to

look for those solutions satisfying this form which will provide the most general equa-

tion of the form (28).

We begin our investigation with a generalization of the foregoing equations. We shall

look for a pair of equations which is made up of (27) and an equation of the form

OFZ(x 1 , x )

at A 2 (xl, x 2 ;F 1, F 2 ), (31)

where the time dependence of A 2 resides within a functional dependence on F and F 2 .

Since we know from (11) that

8F2
O = [H+ I;F 21 + n j [dpl 3+qd 23;F 3 ]dx3, (32)

we may say in analogy with (29) that

F 3 (x 1 , x 2 ' x 3 ;t) = F 3 (x 1 , x 2 , x 3 ;F I , F 2 ), (33)

and, therefore, that

Fs(X1 ,... Xs ;t) = Fs(X1 .. Xs;F 1 , F 2 ). (34)

We shall refer to these functional-dependence assumptions as the "adiabatic hypoth-
eses" in the following sense. For example, in (34), we assume that F s for s > 2 relaxes

very rapidly to a form depending only on the instantaneous values of F and F 2 . This

assumption is analogous to the adiabatic approximation to the time-dependent perturba-

tion theory in quantum mechanics.

This procedure serves the following purpose. We assume that a kinetic equation for

F 2 exists, (31). Equation 31 implies certain limitations upon the time dependence of

F 3 , (33). We shall find the solution for F 3 which satisfies these limitations and use

this function in the integral of (32) to obtain a general kinetic equation for F 2 . We then

have a method of investigating directly the possibilities and limitations of making another

restriction on F 2 , that is, that it is of the form F 2 (xlIx 2 ;F 1 ). We shall make this

restriction and obtain a solution for F in this form. Since the additional assumption

that was made to obtain (17) from (15) is (29), this procedure will yield a result that is
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directly equivalent to (17) except that the divergence will no longer exist.

A look at the equations to be solved will show the origin of the adiabatic hypothesis

and the ensuing statements. If the interaction 4Jl2 is of order g, a condition that we

shall call Case I, we can write

[F = + g 4Jj;F + n s 4is+i;Fs+ dX+. (35)

When particles 1 and 2 are allowed to collide, tb 1 is not small and must be included in

the zero-order Hamiltonian. In this form we have Case II,

r' L5o+I,;s] + g ij + n . Z is+i;Fs+] dx8 1  (36)at = s IS]I<Jl

where the denotes the omission of the pair {lZ}.

We shall see that if F is expanded in powers of g,
s

F=F0 + g F1 + gZ F + (37)
s s s

and a perturbation expansion is carried out, then the zero solutions are

CASE I:

F ° = 1 (x (38a)s i=l

and

CASE II:

F° s x'x2T F1I (x i). (38b)

i=3

In the perturbation expansions of (35) and (36), F ° will serve as the source term for

F s and we obtain

CASE I:

8F 1  +1 FjF+S~ I 5 i
a = [L"F'J +  ij;F ° + ni s+ dx+l (39a)

and

CASE II:

8F I
ats - s0++i 2 ;F +F + n is+,;Fs (39b)[H~ ~ ~ ~L S +is; S +qij;s+] sx+1'

With the adiabatic hypothesis applied to (39) we can study the time dependence of F while

13



holding F constant in the source. If, upon solution, F is found to vary as rapidly as
s s

F then the hypothesis is invalid and another method is required.

The basis for the belief that for a uniform plasma the hypothesis is valid follows

from the equation for F in which we expand and use (38)

at (x) 0 + '42 FI(x 1 )F 1 ( 2 )

8F1( [.F(x 1)] +S 4l x) dx2

+ g n 2 VzFx I, x 2)] dx + gZ (40)

The first integral is the effect of a potential U whose source is F1 ,

V 2 U = -4wne 2  FI(x) d1. (41)

For the neutral uniform plasma, U and the Poisson bracket of F 1 with H1 are zero. The

rate of change of F 1 is of order g; thus in equations like (39) we can hold F0 constant

to the same order in g.
In this report we assume for Case I and Case II that the Fs depends functionally upon

0
the functions appearing in F s . In section 2.2 we work out Case I by assuming a depend-

ence on F . This solution will serve as an introduction to the methods because this
problem is closely related to the more general one. Section 2.3 and Section In will be

concerned with Case II.

2. 2 THE LARGE-SEPARATION SOLUTION

In this section we shall discuss the solution to those equations in which all two-

particle interactions are assumed to be small, which were referred to as Case I in sec-

tion 2. 1. We take (30) to be our form of the adiabatic hypothesis.

To carry out the solution, we must be able to handle terms of the form

a-r Fs(xl" x2" ""x3 ;F1),

for which we know that the derivative will operate only on the F 1 , since that is the only

place in which t appears. For s ; 2 expand F s io a power series in g, where g is the

expansion parameter described in section 1. 2, to obtain (37). In (30) the expansion of

F 2 will have the effect

OF 1 (xd1 ) [HO (X1  1n 3 X..2  0 xl~x2 ;F,gF IxlI X +.j dx, (42)

and we shall consider this an expansion of 8FI/at in powers of g. For convenience of

notation we write (42)

at AI(x + I  + . (43)
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and define the A r by comparison with (43):

1

A1 (x;FI) = n S[+1;F2(Xlx2;F1)] dx 2, (44)

Let X(x1 .... Xs;F 1) be any expression whose time dependence is completely defined

by F 1 * For infinitesimal variations in F 1 ,

6X(xlx 2 . • . xs;F 1 ) = (x 1, ... Xs;F 1 , 6F1),

where + is some new functional that will be linear in 6F 1 • From this relationship 'and

(44), we have
8Fl

t X(XlI ... X;F) = (Xl" "Xs;F1-- -t

= +(XlP ... xs;F 1 ,AO) + g+(xl, ... xs;Fi,Al) + g 2 ...

or

e - x+ +z (45)

Here, Dr denotes an operator that differentiates with respect to t (by operating on F 1 )
8F 1  r

and then replaces - with A 1 .

We wish to apply these definitions to the equation for F s , Case I,

s" - s; + g  4ij;F + n q jis+l;Fs+ dx+ 1  (46)

In (46) expand 8Fs/Ot as in (45), and expand F s as in (37) to obtain

( s2 g o g  Z" = [ sij, 4 F+g s +g Fs "'"

i<j

+ ngD1+g...,J\F5 IgF5 ggF5 I.+g) 1 Fg2 x

+n S[>'Jis+l " s+l

Using the first two powers of g, we obtain the following two equations:
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Do = [H 0 ;F + n is+;F+] dx+ (47)

and

" FI + D F0= [HO;F +[ S ij;F] + n S is+l;Fs+] dxs+l" (48)
i<j l

Since in the limit of infinite separation of all s particles the motions of the particles

must become uncorrelated, we impose the following boundary conditions:

5
Fal T Fl(x is all qi- qj- oo i=lI

(49)

FI  0 i >l.s all qj- 00

Here, F i goes to zero because F 0 is assumed to have all of the boundary contribution.
s S

By direct substitution and the use of the definition of the Dr operators in terms of

ArI we see that the solution of (47) which satisfies (38) is
s

Fxx 1 .... X;F1 1 = f- FlXi). (50)
i=l

In solving (48) we use the fact that, by definition of D ,

s
0 Z

D1 Fs = DI i_ F(xi) = .= Fl(x ) A1 (XiF 1 )

i=l
*i

s

= n T Fl(x) S[is+1;Fl(xi, xs+,;F I ) dxs+ I . (51)

i=l j=l
*i

Substitution of (51) in (48) yields

D F 1  [H ;F] + [ ij;Fs0 + n [ is+i;F dx

-n TT F (x.)is+;F(xixs+)] dxs+. (52)
1 2- l X ) ! 5 -

i=l j=l- slF~i ~.dsl
*i

We see that by straightforward substitution and application of (44) and (50), the solution

of (52) which is consistent with the boundary condition (49) is
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sT s fn k_ F1 (Xk) Fz(xi' x ;F1)"1<i< j<s ki~l

The final equation for F1(x 1 , 2 X;F1 ) is

D F 1 ,x;F [H2;F2(Xlx2 ;Fd)+ [+I 2 ;FI(xl) FI(x2 )]Do  2 1 (XlX1;x2 ) = ,

+ n {j, 1 3;F (x ) Fz(x 2 x3 ;F) + [4J 3;FI(x,) F2(xilx 3 Fl} dx 3
+~ 3[* 1 1 2FI(Xd +[3) 2dx3j x

+ n X 13 +z 3 F(xl x;F) F.(x (53)

For uniform plasmas, this equation has been solved by Lenard1 0 and Dupree.1 1 The

latter's solution is carried out in the Appendix by using methods to be introduced in

Section III. This solution results in the expression (17), which was solved under the

adiabatic hypothesis. Thus in line with (18), the solution to (53) will be denoted
f (xl , X;l

2.3 COLLISION PROBLEM ASSUMPTIONS

In this section we discuss the equations referred to as Case I, (36), in which kI1

is not assumed to be of order g and the expansion parameter has been inserted before

those terms taken to be small. (See section 1 . 2.)

By selecting particles 1 and 2 as the particular particles whose close approach will

be allowed, we temporarily destroy the interchangeability of particles in F . Thus when

we make an adiabatic hypothesis for Fs (Eq. 34) and take 8Fs/at, we must interpret the

effect of 8F 1/Ot and 8F 2 /8t differently, according to their arguments. Since in (36) we

assumed that all tij are small for i and j which are not equal to 1 and 2, we expect
the correlations between these pairs to be the same as those studied in section 2. Z

because the correlation of a pair of particles is generated by the past history of their

mutual force. Therefore, for these i and j, we take 8FI (xi)/Ot and 8F 2 (xi, x.)/at to

be given by the results of section 2.2.N-s
In (10) we obtained the factor N before the integral by summing over identical

particles. If in this new interpretation we are careful to sum over only the identical

ones, we will have as an equation for F 1 (xi )

OF (x ) 0 3 . 1__ )
- 1 1 i;FF(x.) i + N 3 x I [+F(x, - s+ )] dx

However, the last two integrals have small effect for two reasons. First, in the limit

of large N, their contribution will become negligible. Second, we know that outside a
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range corresponding to a close collision all F are the same, so that to this extent they

can be included in the first integral. We have said the tpil or 4'i Z must be small, just

as 4iis+ 1 is small; thus the contribution must be essentially the same. A similar argu-

ment holds for the evolution of F2 (x1 , x 2 ).

This distinction may be summarized in the following way. When we write an equa-

tion for F s , the Hamiltonian will contain 12 to zero order in g only if the set s con-

tains both 1 and 2. We assume that, if this zero-order Hamiltonian does not contain

the evolution of F is the same as that discussed in section 2. 2. This assumption

is connected with the binary collision assumption. We do not complicate the picture by

including close collisions of mutually separated pairs and we explicitly exclude 3-body

collisions. a
With this in mind we are able to interpret differentiations of the form -t-Fs(x 1 , .. Xs;

F l , F). When the derivative operates on F (xi) or F (xi, x3 ), we apply A r defined in

section 2.2. When the derivative operates on F 2 (x I, x 2 ) we must define new A 2 . By

comparing (31) with the equation for F 2 (x I , x 2 ),

OF 2 Ii1 2 ;x2 (H1+ ,); + n [+ ;F (Ix x x;F 1 1 F) dx (54)

expanding in (54)
F oF g F I+g 2F2 +

F 3 = F 3 3 ...

and expanding in (31)

o I g2
A2 (x l ,x 2 ;F I F2 ) = A2(x l x 2 ;F I F2 ) + gA2(x l ,x 2 ;FI,F 2 ) + .

we obtain

An(x 1 , x 2 ;F 1 , F2 ) = 2+. 1 2 F;(x 1 F x2 I

+ n S [ 1 3 + 2 3 F(X.X 2 x 3 ;F. F 2 )] dx3

A2(x 1 , 2  [ 1 3 + 2 3 3  F 2 )] dX3
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III. COLLISION PROBLEM SOLUTION

In section 3.1 we shall use the results of section 2.3 in an equation for

F 3 . In section 3.2 we shall solve this equation and use it in a solution of the

equation for F 2 .

3.1 THE EQUATION FOR F 31 1

In order to derive an equation for F 3 (x l x 2,x 3 ;F 1 , F), we start with Eq. 36 in which

we wish to obtain an expansion for F 3 which is analogous to (37). In (36) we no longer

require that p12 be of order g, and we assume that its time dependence occurs through

a functional dependence on F 1 and F 2 . Expand 8/8t as in (45), F as in (37), and Fs+l;

then

00 1 1 I(D + g D+. (F+ . [H+, rg.F.I + g i i.;F +gF ..0io s s 1
+ n is+1; s+1 + gFs 1 + "" dx

IJL~ s 1~ j c~ s+l~

Equating the first two powers of g, we obtain

"DF0 = EH 0+tp ;Fl + n '. ;F0 1] dx,+ (56)
0 Is 01 2 "] +nis+l s1 s+ 1

and

SDF I + D 1 Fs = [H°+4j 1Z;Fl + ij;F ° + n [ is+l;Fs+] dxs+1 . (57)

Since in the limit of infinite separation of all s particles except 1 and 2 the motions must

become uncorrelated, we impose the following boundary conditions

0os
Fs(x ... x s;F I , F 2  a F 2 (x I , x2 )TT F(x i )all q-j -- Go i=3

except 12
(58)

Fi(X1 .... X; 1 ,F 2 ) 0 i> 1.
F F 2all q-qj -o

except 12

The boundary condition for F2 (x 1, x z ) will not be introduced here because it is not needed,

since F 0 has F 2 (x, x 2 ) in it. The boundary conditions are used only to show the

asymptotic form of F s .

The solution to (56) which matches these boundary conditions is
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S
i]-F F1 (x1 )"

Fs0 (X1  s .... ;F 2 ) F (XI, x 2 ) TT

Here, we have used the facts that

DoF(x 1 ,x 2 ) = A(x I , x2 ;Fl, F2 )

and

"oFl(X ) = Al(Xi;Fl)

To solve (57), we must know the function DiF s . Using the section 2. 2 prescription

for D1, we have

s

D F, =T F (xi ) D F2(x + F (X, I I FI(x) D F(X
S i=3 1=3 j3

-nf-l Fl(Xi) ~i++ 1 ;~lF3 (X1 ,Xz, Xs 1l;Fl F2 ) dx5 +1
i=3ss

n F~I~. F (X3 FI(Xx) X., x ;FI) 1 5

i=3is~ If~i X)[Ps14sl3S+I ) dxs+l"

i=3 j=3
0th

The implications of the discussion in section 2.3 are used. Since the i t h particle is

assumed not to interact closely with the other particles, the function f1(xi, x5 +1 ) in (59)

is the large-separation function of section 2.3.

Using (59) in (57) we arrive at the following expression for D FlI
0 s

DF1 (XI .J.1x ;F1] [F .;F0 (x;F *FDF ~ ~ ~ ~ ,x, ... ;,F . .. , ;F + 4i ,.xr;F F?0 S 1' 5 Sl~ Si 2l jI ijsI
i< j

+ n s is+l,;F+l(x...xs+l;F I F2 ] dxs+l

- n F (XJ [ ls+l+x2s+1 3 1 2 5x F1  F2 ] . dx

i=3 I i r i - i S+

i=3 3"= i

By direct substitution the solution to (60) is
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F1 = s 1
F= F2 (XI x2 ) TT Fl(xk) f(xi*X )

3-<i<j-<s k=3
*i,j

+ f Fl(x k) F3(xi, x2 , x;FI , F).
i=3 k-

*1

Here, is the solution to1ee F3
DF1 (xH3+p ;120 F3(xl,oZI .1 x 3;F1,FDoF(x I x , x3 ;F I , F ) = 0 1 2  3 F 2 )

o 3 1 2 ) [H13 + F12 F3  3)

S [4I 4 + 2 4 + 34 ;F (x4 )F3(xx, x3 ;F, 2 )] dx 4

+ n 3 4 ;Fl(x3 )F3(xix 2, x4 ;F1 I F) dx 3

+ [i4l 3 +i 2 3 ;F 2 (xl, x,)Fl(x 3 )]

+ n ,;F(xzx )f4(x3 x;F (61)

The first integral is zero for a uniform plasma, since it is the effect of the potential U

in (41).

For convenience we put (61) into another form and thus give an analytical meaning

to D0 .

Since for the uniform plasma the integral terms in A2(x I , x2) and A?(x 3 ) are zero,

we have

DoFz(xI, Xz) = [Hz+ l ;Fz(xl x) ]
U (62)

DoFI(x3 ) = [H0;FI(x 3 )]•

Now introduce the operator S1 that projects particle 3 backward T seconds along

a path given by the free-particle Hamiltonian. For any function +(x3),S I H0 S 1 x(3-,+(x 3) = I1T3)] (63

Likewise introduce the operator S that projects particles 1 and 2 backward along the

paths given by their Hamiltonian including interactions. In operating on the coordinates

of a colliding pair at x and x., this operator will produce the coordinates x1 (-T) and
x2 (-T) . In analogy with (63), we have

8 S_,.(Xl, x)= [H ;SZ (Xl, x 2 )]. (64)
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Using F 1 (x 3 ) and F 2 (x I , x 2 ) in (63) and (64), we have

aF S.Fix81 r 0 i
L 3(65)

-S 2 F (x 1 x2 ) = [H 0+4J1 ;S z F (x1 , x2 )].

Comparing (62) and (65), we have the identity

D F ( 1 , -x3 SFl, S2, F ) = LFl (xx 2 ,x ;S' Fl, S- F2 ) (66)

that is, if in the functional dependence we use SIF1 I and S ZF 2 instead of F1 and F 2 ,

the D0 operator can be replaced with 8/8T because the effect is the same. By using this

relationship, (61) becomes

i- = H34i 2 F(xlj";S T3x23 2 x3 ;F 1 S FT-r2 )]

+ n ;S I1J4 s F (x )F I( 1 ,xZx ;S I F1 , Sz F2 ) dx:4

+ [ FI

[4' 3+2 3 T 2xlx 2 )SlFi(x 3 )]

+ n ['4+4,4;S 2 F (x, x )f (x3 x ;S 1 F)]d 4

(67)

where we have replaced F1 by SITFI and F 2 by S TF 2 .

Note that in (67) T is not the time variable t. Here, t occurs as a parameter inside

F and F and T is a dummy variable introduced to give analytical meaning to Do .

Equation 67 holds for any value of -r; we shall pick the value of T that is most convenient

to us. Because of the adiabatic hypothesis and the implications of it, t lost its position

as a variable and became a parameter in the equation for F s . The t-dependence has

become a functional dependence on F1 and F 2 .

In order to make the functional substitution clear, (67) is more general than

is necessary. Since we have assumed that F I has no spacial dependence, we

can use

SI_ F I (V3
) = F I (P3

)  (68)

throughout this report.

3.2 SOLUTION OF THE EQUATION FOR F33
We shall now solve the equLtion for F for use in the equation for F without

32
expanding F 2 in g; however, we must expand F2 in order to obtain its solution. Some

of these operator techniques were developed by Dupree. 1 1
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To proceed, go back to (79) and use (80), to obtain

a Fl \lxoxz X3 ; 2Fz [H 0 ;F1 ;F3 \ 1 XPF F2 /i

+ n 1  )F(x x ;F2 F2 ) dx4

+ [ 3 +.P2 ;S2 F (x1 x )F1 (3)

+ n 1 dx 4  (69)

For the moment abbreviate

x2Il~ xXF 1 ,S 2 F ) mF1()F3 12 ' Tz 2 F3()

where the other dependences are understood. Using (22), we may then write (69)

8S2F1() + LS2 F1(T) =2 (70)
T-r- +T + +T 3 +

Here, the operator L acting on any function +(x3 ) is

r+( 1 8F 1( 3  8 c x
L(3) [HO;*(x 3)J -, ) d3 ~x 4  (71)

P3 3

and +(T) is the source term made up of the last two terms of (69). Note that S2 and L

commute since they operate on different coordinates. We call L the Landau operator

since

8f(x3 0 t)
a t) + Lf(x3 t) = 0

is the equation involving L, which has been discussed in detail by Landau. 4

Writing out the arguments, we obtain the formal solution of (70):

F1~ v 3 ; S 2 ) LT 52 d' r' ' s2,( 2FZF

+ e - L  S2T+(Xl x ,2 x3 ;F I , F 2 ), (72)

where we use the fact that L does not depend on r when F I has no y-dependence.

In (72) let F S+,F use the inversion property of the S_ operator, and let

T- T - T', to obtain

FI(xlsxox;Flo F2 )= - LT' S_2 .(x 3x;F SZF.)d.
0

+ • - LT S2 , (X 1,x 2 , x3 ;F I , F2 ). (73)
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The left-hand side of (73) is independent of -, and thus we are free to pick IT arbitrarily.

We pick T = co and thus remove the initial condition term because by (58) F 3 must go to

zero for infinite separation of 1 and 2.

We then have a new understanding of the adiabatic hypothesis and the Dr expansion.
We shall see that (73) implies that, to this order of g, the correlations are calculated

by integrating along unperturbed (that is, zero-order) orbits while F1 and F 2 are held
constant. If F and F 2 are known to change in times that are comparable to the time of

build-up of correlations, for example in a nonuniform plasma, then this analysis is
incorrect. The dummy variable T gives us a way of studying this mathematically.

We must interpret the meaning of the operator e-L T in (73). For any +(x3) e -LT

satisfies

a -L- e-L(
' e (x 3 ) L(x3)-= . (74)

For the moment let

h(x 3, T) M e-LT C(x)

for any o(x 3 ), and let us represent by R the Fourier-Laplace transform

(3 ' ) = R(; d e h( 3, k -r) (75)

where

h(P3' E, T) d -3 e
is °43 h(P3, 3; T).

As shown by Landau, 4 (75) reduces (74) to

Z.mwp1 8Fl(P3 )

3 + I (76)
~ h-j-k 863

or

" h(P3 ' 0) o)

dP = V38F 1  (77)2. .

3- d-1
- .

k 3

(We are actually interested only in the integral of h over d 3 .) Since Re a > 0 in the
definition of h in (75), the integral in (77) is defined. To stay above the point (-LAr),

we take the same integral, with the -integration deformed, to be the analytic continua-
tion of the function Re r 4 0. All of this computation is identical to Landau's work.
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Finally, inverting the transform, we obtain

14fr do ei+T , d- e 3 . -ikv 3  (78)
3 hd f3 - 4 -_i+p Id 1 L +(r)

where we define

2 BFI(P 3 )

2 k 3

The plus and minus signs indicate that the contour is to pass above or below the singu-

larity.
Resorting to the definition of h, we have

__3) 
- d;k

fe-Lr(x3 ) d 41 do - e*T d e- 3

(2ir) i 0-io+d 1 + L +o

This implies that

S dP3 Fl(xlx 2 ,x 3 ;F I , F2 )

S dd3  dTee - "(S ol-x- "3 ;Fl, F1)

-( z Ts x V 1 r'173 ;Fl, F2 )

14 1 - doe dk e (80)
(27r) i 0 -0oi+P 1 + L+(o)

where

T(SZ-xIX'2,x - 3 ;FI F )= F dq ei k-3 + ( S _ x l x vx 3 ;F ,Fz).

In (80) we have used the fact that

s 2 +(xi,x 2 ,x ;FV, S2F)- x 1 x, 3 F1 , F 2 ). (81)

This follows, since SZ-T is defined to operate inside the function wherever x I and x2zoccur. In (81) we interpret the S-T as operating on those x and x2 lying outside the

function FZ(x1 , xZ).
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To continue we must insert the form of T. Remember that we defined

*- [123+q13 ;F2(x1, x2)F1 (F3)]

+ n' S [ 4'2 ,x'df~rV4 q dx 4. (82)

Using these definitions we obtain

+(x 1 x , k,- P3 ;F 1 , F 2)

2  { 2  2 F3 (V3) + n -Fz(xlx) s -2 (p3.P 4 ,k) dP4) e "1 +(1--Z2}•

(83)

In (83) the notation (1-.-2) means that the previous term is repeated with 1 and 2 inter-

changed,

1J ep* ap.
13J

and

f 2 (r 3 #P4%k) d e ' q2 fzltP3' P41 l

If il(-'r) is the position of particle 1 at -T, given that it was at 41 at T = 0, with the mech-

anism of the motion governed by the two-body collision, and similarly for q 2 (-T), then

(83) becomes

4 ie 2  kF F ( 3 + n x8F 21( 3 4,) e '  l( -e

7k *{da3FZ(xl, x
)  p((;3) .fF(3 4' )

(84)

Let us now discuss the interpretation of some of the integrals appearing in (80). Note

that the fr-dependence in i is in the form of an exponential with an imaginary argument.

Thus the r-integration can proceed only if P is negative. Since the inversion in the

r-plane must go to the right of all singularities, A can be negative only if all of the zeros

of the denominator lie to the left of the imaginary axis. For a wide range of F1 (P3) this

is true as long as Ik I> 0.13 Thus we exclude an infinitesimal region from the origin of

k. Under these restrictions we may proceed with the T-integration, followed by the r

then by the k.

Those distribution functions that give zeros of 1 + L+((r) in the right-half plane pre-

sent a difficult problem. For these situations the past is not damped out, and the cur-

rent value of FI must depend on the initial conditions - a situation that is incompatible
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with the adiabatic hypothesis .11 It would appear that the hypothesis is invalid for plas-

mas containing these instabilities. In order to proceed we shall limit ourselves to the

more well behaved functions F . As Baccus shows, 1 3 these are all single-humped

momentum distributions.

A physical understanding of why some distributions F 1 (P) give rise to damped solu-

tions and others do not can be seen from the arguments used to explain Landau damping

and plasma instabilities. 1 4 Because the shielding integral (the L operator) in (70) is the

same as that considered by Landau 4 in his use of the Vlasov equation, we obtained

Landau's characteristic denominator 1 + L+(a) and can use his analysis of the study of

waves to study the growth of correlations.

For the k partial wave in the analysis of wave motion in a plasma, those particles

traveling at the phase velocity of the wave will see a constant field. If

k F
p v=:/ik

is negative, more particles will be speeded up than are slowed down, and damping of

the wave will result. If this derivative is positive, energy will be fed from the particles

to the wave, and a growing wave will result.

In the problem considered, the plasma is homogeneous and the k-analysis refers to

the coordinates q1 - q 3 and q 3 " Whereas for waves we had damped or increasing

energy, in the problem considered we have decreasing or increasing correlation.

Using the form of + in (69) and the meaning of the S2 operators, we have

x x x F1 , F)=s2(l +i) ;F 2 (x1 x x)F 1 (x3)
z'' 1

+ n [ST (+ 14 ++ 24 );F 2 (xl, x 2 )f2(x 3, x 4 )] dx 4 . (85)

Throughout this analysis we have assumed that we never have a three-body collision,

that is, that the interactions of all pairs except 1 and 2 are of order g. This assump-

tion implies that the distances Iq-- 3I' I q-3' q1 -41 and q are large in the

sense of the g expansion. The S_..r operators in (85) have the effect of

S2 3 (ql(-T()-q 3 )" 86)

The change in +13 will become important only when jql(-T)- l I becomes of the order

of I 7 3 I. By assumption this change takes a long time, a time that is sufficient for

1 and 2 to be far apart. For example, we assume that I 1 and I-qD /kTI.

At this separation the potential 4l, has the magnitude

T 12 ( L -: kT
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which is much smaller than the average kinetic energy kT. Thus for those values of T

in (86) which have any effect, 1 and 2 can be considered to be interacting only weakly.

In (86) we will specifically use the fact that as ql is projected backward in time, the

difference Iq1q 3 1 is relatively insensitive to the change in -q while 41 is in the imme-

diate vicinity of 2. A similar argument holds for q 23 by interchanging 1 and 2.

These statements can be made quantitative by introducing in (86) the operator _T

that projects 1 and 2 backward with zero interaction, that is, along straight lines and

with constant velocity,

2 2 gSg LI 2 *2 (7

As we shall see below, for large values of T, the product S2 A? becomes stationary,
-T T

independent of -. This fact, coupled with the preceding discussion, will be used to

approximate (87).

To understand the foregoing assertions, consider the operation on the velocity of

1 or 2

lim 2

T -* 00 -T I

This will approach a constant limit defined as

lim 2-
T -C -Ti 1 2

By its definition Vi(Pi=m! is the velocity (momentum) that the i particle had in the
distant past before undergoing the two-body collision, given that the colliding particles

have current coordinates x and x 2 . For this reason we shall refer to it as the precol-

lision velocity (momentum).

Equation 88 proceeds at such a rate that

T(V.-S- ) -.

This condition ensures the existence of the limit

where

~~(Xl ~ ~ ~ _S "V. i+ '(sT~) dT.

To find the position Qi(xl, x 2 ), start at the point qi, project backward T seconds along

the trajectories of a two-body interaction, and project forward T seconds with the con-

stant precollision velocity V. In the limit T - W, this procedure will give the position

that the ith particle would have had with no collision interaction. For this reason we

call Qi the undeflected position.
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Now consider for any +(x I , x 2 )
l m S2 g2q

T -00 -TT+9'541

lim q,-IT -- 2
r S 2 +( 2  ql- VlV ' )

T - 00 T '

0rn __ T V2 Z, q, + (S2T v I-s2.r I1 d'r', q, (z zs2v) d)

= '1 I P2' I;Q2)

+(X 1 , X 2 ).

We define the 6-dimensional vector Xi = {Pi, Qi}.
Notice that the transformation from (x 1 , x 2 ) to (X 1 , X 2 ) is a contact transformation,

since it is obtained from a product of transformations governed by Hamiltonians. This

property will be useful because of the invariance of the Poisson brackets with respect

to a contact transformation.

To approximate the product SZ A2 on any function +(x 1 , x 2 ), we may expand the result
T T

around T = 00:

S2z 2*(x1,Ix) ={ + (S z~ 1 ~).~ + (S? P24P) - + (SZT Z~l'l 8~

BP1  OP 2 + 1

(S2_gz_ ) 8 }S 2 g (x1, xl ) + higher-order terms.

Application of this to 4 13 (ql-vT-q 3 ) yields

2 Oz2S _ 3 (qI I - I  3 13 (Q  I - -q

-Q - I =I 8Q 1 1 3 (Q1 -V 1T-q 3 ) + ...

The coefficient of the second term is, as a function of T, the deflection of particle 1

along the path of its collision with 2. By using the specific form of +, the ratio of the

second to the first term is of order

T(89)

The quantity IQ 1-q3 1 is large for the same reason that jz l31 is large, and it is of

the same order of magnitude. The ratio is then small for all situations except those in

which l and 2 are widely separated but have had a collision in the past (that is, Iq-Q, 1
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is large enough to be in the range [Q 1-qj). For l and Z close together and 1 and 2

experiencing a close collision, the ratio (89) is small.

We shall ignore the exception noted above and assume that the ratio is small for all

situations of interest. We shall see that those situations for which (89) is not small

have.negligible contribution to the problems of our interest.

These approximations are in the source term of F 3 . If we were to consider correc-

tions, they would occur as new (small) source terms and be additive.

We shall then use the fact that the approximation

ST4'1 3 1 3 (Q 1 -r-43) (90)

is a valid outcome of the g expansion; and similarly for ST412 3 . Since in the integra-

tion over dx4 in the source term 1 we assumed that q- 41 and Iq- 4 I are large (that2 2
is, we cut off the integral), we can make similar expansions for S 4 and S2

This step represents the real departure from the analysis when all particle inter-

actions are assumed small. Rather than the approximation (90), these treatments have

implicitly used the approximation

52 02S=S T ST

or

s 1 - 1 3 (qlv T- 3 ). (91)

By the discussion above we see that these approximations are valid only when q1l is

weak at present and in the past. Use of (91) and the following procedure would lead

directly to the large-separation solution.

We may then use these approximations in (84). Since we effectively make the trans-

formation--. - Qi inside qs, to retain the form of the Poisson brackets we must trans-

form 8/81- 8P iP. With these changes, (84) becomes

j;(S2I x2 3;Flo F2 ) =y 4w¢ie 2 "(I3F2l x.) FI (13)

k
8F2 Xi x4)-1 i k " ( = 1 -0 )

+ n f. 2, V 'P ) dV) e+( - )

(92)
where 1= D 8and23 r)8

3  23 8 3

Using (92) in (80), we obtain another expression for F 3

S(x1 ,x 2 ,x ;F1 ,F ) d 4 e 2S 00d-rIOC+P do. e a1-rdkC e 1
3"3

0k 2  
1 + L+60 "-.V 3
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'. {(1i3 F2 xI~ x2 ) F1 ( S3) + nF , x) .)r.)+}Ipp3 P4,x "x. dp"4  e k+ ('"

BP1

(93)

If P < 0, we may carry out the T-integration, which will bring down (a-ikV1 V and

(a.-SiV2) -1 in the two terms. Note that the approximation (90) was made to make the

T-integration possible. For those functions F 1(T 3 ) for which I + L+ (cr) has no poles in

the right-half plane, the a-integration can be closed in the right-half plane and will only

enclose poles at S-7 I and iS. .V Carrying out these two steps, we obtain

F3(x x 2 , x 3 ;F 1, F 2 ) d 3

- -I " 1 3 13 Fz(xl'x) FI( 3 )
(2-0) ~-k L + -v D1 f

+ 8F2 (x 1,x 2 ) f_____,__d___+L+i l
F n ( d,,) e ik.) + (l-2)}. (94)

The 5 means that the p 3 -integration is to stay above the poles, since (-i) was to be

below the axis.

We wish to use this result in an integral of the form

n T[1 3 (I );Fl(xl 2 , x 3 ;F 1 ,F ] dx

where we are faced with the integration of a coordinate that is assumed to be far removed

from 41 and 4Z. Accordingly, we may approximate under the integral

n 5 Q- + Q ; XI X ;F 2 )]dx (95)

This approximation can be analyzed exactly as before, that is,

13(1---3 ) t4'13( 13 11 (8 13( 1 3

The error term is of order

which has the same characteristics as (89).

Putting (94) into (95) yields the interaction integral'in the equation for F2 :
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OF2 (XI x 2 ) H)] _ g n(4we2 )2 i Sdl .

at [ 2+- 12;F2(Xl X -2 (Zr)3 k

k D(13F2NX 2F
1_ 1 + L+(i. 1 ) S k(Vl-V3)

+ nF 2 (-,x x ) f f(,34 ' k) d 4 )aP1

+ e La 1 F (x V ) F
=82 (1 +L +(itMV1 ) k k(V7- 3 ) 1

an p3, Pxt ) d;4 + (1.---2}. (96)

This is an equation for OF 2 /at to first order in g. It is complicated but will yield

some interesting insights. The integral terms can be simplified somewhat by examining

the equation for f I
V1 1

Let us rewrite (53) for a uniform plasma by using F2(x 3, x1 ;F 1 ) - f2(x 3 ' x 1 ) and the

fact that f 1 depends only on the difference of spacial coordinates = ; we obtain

I (P_I a 1D 0 (5 p,-q ;FI) + .mfZ p3, Pl, q;Fl1)Ioz P3 11PI m -aq

OF1 ( I) a 5 d 5 da('-) 1 P';F 1 )

a~l a

aF 1(g) a_ dd) fd 5 P 1
q 2 pq)

a 3  a 5

= 8_ ( )B. d 1 F -3 )  F ( -1 ) . (97)

aq

Again we introduce f1 3 , Pq;S- F1 ) and use the fact that D o - /T. We are again

free to pick the value of T, since it is a dummy variable. However, since T appears in

the unknown function, its value must be selected carefully. We shall pick T - o0 but do

so in the Laplace-transform space by letting the transform variable a - 0. This will

also set 8fl/OT equal to zero, as it must since D F = 0. This technique can be used
2~0 1

because of the fact that for

0 = g(T) e T d'r, 
(98)

0

lim (0
-0 (r) = g(O),
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and

12 P3' pI'q;lTF1 - f1( ;

The initial condition term will also disappear in the limit o - 0.
Putting (98) into (97) and carrying out a Fourier transform in space as in (75),

we have

lim (El)) a-1 . 41rn e 2  8F1( 3 )
d)f2(p3'Pl kz .2 -2 5.

4~ne 2  - OF 1(61) d6 -1

2 kP5 2 (P3: P-I'

4 r e 2  I( )

k 2 e k d d31 Fl1( 3) F 1(VI)"-(9

Dividing by (E-i;. (-- )) and then integrating over P63 yields

n "F 1 
(6 3 )

I lim 4w ez  8e3
f2 (P-p 1,) dj3 n- 2 Y d iV

3= 
d6f(s 1' 7 1P )2P

k k.( 7  + dic 5
(p ) ) k d3 1 F( 3) F( l)

Op"1  - "( 3- -1) + ifE + "(V- 1 )+iE

Rearranging terms and taking the limit E - 0, we have

OF1 2p 1  F_(-_)_+_nfI____;)_____._FI (F,(I 3) + n f:( 3 p 5, ) dP 5 )dP 3
kk.

kZk 8PI + k' (v -V -3)

= n 5 (p3,p., ) d03 + 1(+ L(i;. ) (100)
We may use (100), together with ;1 - V and 2 - 2' in (96) to obtain

F °(x x ) [ 4 w e 2 i YdiS... 'n ( -
8t -

(2w) 3
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+F1(P 1) L +(Sik.rd)) 1 8F 2 (X x 2)

1 + L +ik -V) 8F I(P 1 ) 81

F2(xIx 2 ) L+(ik-V 1)J +{ eJk 2-P 3  f' P

1 + L +(ik. Vi) (V l d;

+- F, (Pl)L+(ik.V) 1 a_*4 F (x

L +(S -V 1  8F 2(x1,Ix 2)1 +111

1 + L +(Sk1 a- V I (1- 8PJ 2 11

This form of the equation for F 2is still very complex; however, with it we can

easily obtain results to be compared with (17). Obtaining these results will entail making

an adiabatic hypothesis for F2in the sense that we now assume that the time dependence

of F2 resides within a functional dependence of F 1 .
In line with this hypothesis, we expand

F (x 1 , x ;F ) = F'(x, x ;F ) + gFI(x1, x ;F) +

and introduce Dr operators that replace OF1 /8t with Arin (96) and then we equate equal

powers of g, for the first two powers, to obtain

"DF 0 (xIX) = [H + .I.;FoFl~x l (102)
0 2 x2;F1) L2 2 zl2 1

and

" F 0(x1 ,X X2 ;) + D F 1(x1 ,I x ;F) [H4+0J 1 ;Fl(x1.X X;F)

(2w) 3 k z P1  z6* l dP

F 1 + (k V 1  1 BF o(x, x2)

1 + L+ik fk V 8F 1 (P1) 8

F 2(xi IX2 ) L+(ik -Vl) ik e (Q 2-Q1 ) [f I.
+ I+ I~ f( 3 ' P I') dP3

1 +L+(ik *Vl) LLO
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F_(P L + (ik-) V 1) (k-a F(xx 2
1 + L+likVO) 8FI(P I ) 8 2p 8PkSoerr
L +lik - VI) 8F 21(Xl X21 + (11 -2) ( 103)

I + L+(ik- V1 ) 8P 2

Let us first discuss the solution to (102). By the same procedure that we used in

section 3. 1 we can replace the D0 operator and obtain

a 0F(xlX 2 ;S1 F) ;Fo(x x;S FI)].

By (26) the solution to this is

F2(Xlpx2;S 1TF) S! F0(Xl x 2 ; F

or, letting F -SI F in the functional dependence, we have the solution

F0(x I ,x 2 ;F I ) = S 2 F2(x l IxS 1 F (104)

Since the left-hand side is independent of T, we may again pick the value of T arbi-

trarily. We pick T - 0 and use the boundary condition that is similar to (49)

F0(X, x ;F ) -- FI(x ) F (x2 ). (105)

Sql-q 2 1-l

Using these, we obtain
o . 2 *Z

F0(X, X2 ;F) = Srn S2 STFl)F(X 2 )
T--O

FI(X1 ) FI(X 2 ). (106)

For the homogeneous plasma

F0(x i 0x2 ;F) =F F (P).

By the definition of the D1 operator we have

D F I = D1FI(P 1 ) FI(P2 )

= nF I (P 2 ) Y J1 3 (Q 1 - 3 );fi(PP3Qq 3 )j dx 3

+ nF (P . A[4i 3(QZ-q );f I(P2  Q -q )] dx3
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4we 2i F() dlA-. a
F (Pf2k(Pl53) dP3 + (1---2). (107)

(2w 12 2  - T

Upon inserting F0 into (103), we see that (107) just cancels the two integral terms

that have no (Q 1-Q 2 )-dependence. This cancellation is the plausible way of avoiding

the secondary divergence, mentioned with (19), which results from an integration over0
q 3  The subtraction of D 1Fz(x 1 , x2 ) involves the difference of two integrals that are

to be cut off. This removes the dependence on the cutoff distance in the equation for

D0 F 
1

Do2"

Thus (103) becomes

DoF 2(x r x2 ;Fl) 1H H+ 1 2 ; F2(x , x2 ;Fld]

241e 8FI(P) p ii '(Q2 _-l) d

4ne2i 3 cake f fz(P3,"2,') dP3
(2w) 3  

8P 2

BFre . (P ) dk ~ 1 ' 1 I C -
- n - 3j- ke jf 2 ( 31 P 2 k) dP3

(2r)3  OP 2

P+ P2 I~
= L 2m ; F2(xIlx ;FI

+ n 5' 3Q2- )~ 2 )ip 3, Ql-q 3 )] dx 3, (108)

where, in the latter form, we have written the integrals in i-space and used the fact

that
2

P1 +P 2H 0 + 1: = 2 '

Now add the term [kJl 2(Q-Q 2 );FI(P1 ) F 1 (P 2 )] to and subtract it from the right-hand

side of (108). By comparing the results with (97) and using the invariance of the Poisson

brackets with respect to a contact transformation, we see that F can be split into two

functions

F1(x I S x ;F1) = f z, Q z) + h (xI , x;FI), (109)

where h 2 is the solution of

D~h,( x,, x,;F,) H [0 ;h,(x , x.; F1 ) I [ 2(QQ);F1(P) F 1 (P 2  (110)
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By the familiar use of the D0 operators we can see that the solution to (110) is

h,(xl, x 2;F1 ) = - [S 00 dT 12(Q -Q2I\TVz)T);Fi(fPi) Fj(P2 )]. (111)

Combining (106), (109), and (I11), we obtain a final form for F. to first order in g under

the adiabatic hypothesis.

F 2 (x 1 , x 2 ;F 1 ) = FI(P'I) FI(P2 )

+f 2 (P1 P 2 ' QI-Q) -[So dr ki12 (Ql-Q 2 -(V1 --V2 )T);F 1 (P,F 1) 2
(112)

In Section IV we shall see that use of this function results in no divergence in the equation

for F 1 .

We shall look at (101) in its more general form, as a kinetic equation for F 2 . As

such it is exact in k12 and accurate to first order in all other interactions. If any col-

lision term in the equation for F 1 is going to be used, it should be obtained from (101).

For example, the expansion in g and the adiabatic hypothesis led to (112) and will be

used in such a collision term.

We can also use (101) to study the limitations of making the adiabatic hypothesis for

F 2 . If in the solution we had expanded in g but not made the hypothesis, we would have

had as a zero-order equation

aF 0

This is exactly the form of equation that Bogoliubov considers in showing that, for

short-range forces, the adiabatic hypothesis is valid. He shows that, for forces of range

r o , F0(x1 , x 2 ;t) would relax to the form F0(x1 , x 2 ;F 1 ) in a time of the order ro/V. If

for the long-range interaction we interpret a collision as described in section 1. 2, this

would be a time of order

_7D I - I e -
J; -v = Wp  :<0 I,

kT V p k'D p

where is the characteristic time of change of F 1 . We can restate this by saying

that an adiabatic hypothesis for F0 is forced on us by the boundary conditions. To zero

order in g, the only force producing correlated motion is the two-body force, and the

time that is such that this force is not of order g is small compared with the time of

change of F 1 . (These statements for F0 can be carried over immediately to the inho-

mogeneous case; but we shall not carry this out since the transition is not as simple for

Fl.)

If we use the value of F0 thus obtained in the equation to first order, we have
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OF I (x11 x) [-

at H 2 4 1 2 ;F(xx)

+ n 5[ 1 (l- 3 );Fl( rd 4(2'k V dx 3

+ n 5 2 3 (- 3 );F 1 (P 2 ) 1(P-,3 Q 1 -q 3 ) dx3 . (113)

Again an adiabatic hypothesis is attractive, since the whole source term is a functional

of F 1 . If we call this source term 4 (x 1 , x 2 ;t), we can write the solution to (113) as

FI(xl, x 2 ;t) = S 2 t 1 (X1 , ;t2 2 -(t-to0) 2Xl x2;t0

+ 2 x 2 ;t') dt' G dt' S-t 2*(xlx 2 ;t-t').to tiI-t 40(Xl x ' to. 2o

1 is zero 0tifnt eaain ost0 0o 0

Here, we use the boundary condition that F Iis zero at infinite separation, 4 goes to2
zero for q-q 2 1 XD , and the t'-integration will back the particles off to this distance

in a time - XD/V. If +) has not changed in this time, we hold it constant throughout and

say that

F2(x 1 , x 2 ;t) 0 dt' S-t' (xl' xZ;t). (114)

Since t in + occurs only inside F 1 , (114) is equivalent to the adiabatic hypothesis. The

argument connected with (40) indicates that for a uniform plasma F1 changes sufficiently

slowly that these approximations in the integral of (114) are valid.

From this discussion we see that the adiabatic hypothesis depends on the order of

g. To zero order it is well founded. To first order two problems enter. The first is

the necessity of assuming a slow variation of F 1 , as mentioned above. The second is that1 1
the hypothesis for F 2 (x 1, xz) depends upon the hypothesis for F 2 (x 1 , xi) where i *2. (The

fact that the source term in (113) is a functional of F 1 depends on this.) Dupree 1 1 has1

shown that the hypothesis for F1(x 1 , xi) depends also on the slow variation of F 1 . It
1

simply shows that the hypotheses for the various F 2 are interrelated and cannot be con-

sidered separately. The first-order effects in a plasma include shielding, which is a

cooperative phenomenon.
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IV. DISCUSSION OF RESULTS

In this section we discuss the result obtained in the previous section and see that

it removes the divergence in (17), as desired. Section 4. 1 will be devoted to a dis-

cussion of the equilibrium case as an example to increase the understanding of the

results. Section 4. 2 will contain a discussion of the more general case.

4. 1 THE EQUILIBRIUM CASE

At equilibrium the momentum distributions are Maxwellian. Using the fact that

p and P are related by the conservation of energy,

2 2 2 2 2
PI + P2 Pl + Pz e

=+ -

2M 2m +

we may write the first term of (112) as

F 1 (P 1 ) FM(P2 ) = FM(pl) FIM(p. ) exp (115)
M i

where FM (p) is the Maxwellian distribution.

Other authors 9 ' 10, 12 have shown that for equilibrium the large-separation solution

reduces to

f Z(l ' q- )  
- exp F (pl) Fm(p2 ). (116)

kT Iql-ZI XD

In terms of the undeflected variables, and using (115), we obtain

f 1(P - eZ [ ______ (P) M (pZ kx[_Tkje 2
e kTIQ1 --- F1 (p1 )F 1 ( 2 )o

(117)

For equilibrium the final term in (112) may be evaluated as follows:

M dT

[ T d 1 ( 12(Q1-Q2-(V1-V (F2)V-V ) FI (PI) F, (P2)

=T O T d I2 (Q 1 Q-(V 1V)) FM(I:I) F, (P?)
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1 - FM(pl) FM (p2 ) exp - eT_(118)kTI '-- I .-q1.

The results (115), (117), and (118) give, for the equilibrium function Fz(x l , X2 ),

F(xIIXZ) F 1 (p 1 ) FM(p 2 ) exp kTIqlq-- { kTIQ1 -Q ex[ L

(119)

Those regions for which IQ- I differs from jq-q[ are those for which IQ 1-- 21 <<

and for which, therefore, the last term in parentheses is small. To the same order of
e /kTXD we may replace jQ1 -Q-21 with jql-q-2 I in (119). This substitution is consis-

1 nd1totedfrnc
tent with our assumptions concerning the insensitivity of F 3 and F 2 to the difference

between Q and -.

We could approach the equilibrium case from a straightforward application of sta-

tistical mechanics. It has been shown 1 that the effective potential field of a charge

imbedded in a fluid of charged particles is approximately the Debye potential

e2 e-r/XD

r

If we were to assume that this is the potential energy between two charges, we would

write the two-body distribution function as

Fe(Xe M e exp[ Iq 2 11
Fe{Xl x2) = FM (pl) F M(p 2 ) exp. kIl_ I j

if Iq--q2I o e /kT, we can expand the exponential and obtain the result corresponding

to the large-separation solution, (116),

Fe(XI, xz ) ! FM (Pl) F (p1) 1 exp[ .q7 2 (120)

(P22

kT l- Z I X
If we do not wish to assume that 2 e /kT, we can write F2 as

Fe (xl,Xz)= FM (pl) FM (p.) exp - exp[- eT_ F ([ xp j -

F2(x, 1 M1 T~q2 JeP kTljq- 2I~ X~P[ DJ

and expand the exponential of

2 ( F x p I1q qkT Iq--q I X D

40



This function has its maximum at ql-- l = 0, the value at which it equals e 2 /kTXD,

our small expansion parameter. Under this expansion we have

x)e FM~ M F e2 e 2 (x[I7- 1 N?.
F 2 1(xI , xp2 )  ex(jj .TI eJ _ .1- kTJ J D

(121)

Equation 121 is (119) when we replace IQ1-Q2 with Iq-- , and is the equilibrium func-

tion that we obtained by allowing for possible small values of Iql-q I. Both (119) and

(121) result from expansions in the weakness of the forces giving rise to shielding.

If we regroup (121) as

F1 _ 2 ____ _____ ____
M~ ( P{)F e[(pz) exp[_ ( + T exp

I -q2 ~ kTlq-7-~zIX

and expand for q21 >> e2 /kT, we obtain (120) to first order in e2/kTlq-- l. The

effect of the additional function h2 (x1 , x2 ) of section 3. 2 in the transition to large sepa-

ration is to cancel the first-order effect in the expansion of F2. We shall see this in

the more general case in section 4. 2.

Another use for F2 (x1 , x2 ) will be in the equation

aF 1 (X1 ) F0 C F
at = [H;FI(Xi) + n ) [PIZ;FZ(Xlx 2 )] dx 2 . (122)

The use of F 2 (x1 , x2 ) in the interaction term of (122) involves the removal of the dis-

tinction of particles I and 2, which was discussed at the beginning of section 2. 3. The

coordinate x2 in (122) is simply a dummy variable in the integration over a function that

is considered correct for all values of (q1-q.).

We can use the expression (121) for Fe in order to estimate the contribution of

various terms in FZ to the integral in (122). We know that the angular integrals over

F ewill give zero contribution, but we are justified in examining the (I7lI1) -depen-

dence for this case. In order to have convergence in the (q-q i)-integration, it is

necessary to subtract the effect of the uniform background (also zero on the angular

integration). Thus we shall examine the 'q dependence of the integral

S [,i2;F(xl, x)-FiM(pl) F M(P.) dx2 . (123)

Our motivation for this is as follows. In the nonequilibrium case the angular inte-

grations of (123) will not give zero. However, we can expect the (Iq- l)-dependence

to be roughly the same. If we can solve the equilibrium case, we can gain some in-

sight into the nonequilibrium case.
Using (121) for F in (123), we can write the lq-l I part of the dx

412-integrationas
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e ] er2 - (124)00dr xp Tr1+ -T ) I - !- exp - k 14
JIkkrr T D I

Let us integrate the last term,1 5

2 0 e2 . 2 2 2 er~exp k-r = K
kTJ~rXP[kTr XD-kf 0

We can expand the modified Bessel function 16 for small argument and obtain

2"o 00 ] 2 2 2
e dr [ e r e- l e+0\ e e
kT 0  r exp kTr D iT D kTXD I (125)

where Y = e C , and C is Euler's number, 0. 577.

Use of the function (121) has resulted in a convergent integral. Had we followed

other authors and used (116), the integ'al would have diverged at small distances.

Cutting it off at the distance of closest approach, e 2/kT, yields

e e dr D e . e +(e e

i;j; 2  r (kT TXXD KT
e /kT r - +0 XD .

This result agrees with the more exact treatment to the same order of e 2/kTX D.

This surprising accuracy of the cutoff procedure occurs because, to a function that

varies as XD' the function exp(-e 2/kTr) cuts off very sharply. Because this result was

obtained only from the (Iq-q I) -dependence of the integral of (123) and did not rely on

the symmetry of the equilibrium function, we can expect similar results for any non-

equilibrium function ). We therefore expect that we can still retain

accuracy to the same order in g if we set

f (PIP21 _Q ===fl~fl, q-q?(126)

and cut off the integration at e 2/kT.

The new results obtained by considerations of the close approach are in the first

two terms of the integral in (124),

0 dr [exp [+ - ] R" (127)

This is of the same order of g as (125), and thus we obtain a non-negligible contribution

as a result of the close collisions. The generalization of (127) to the nonequilibrium case

will not be as simple as the result for f2, (1 26). The generalization of (127) depends

very intimately on the nature of the functions for 1q-- I - e2 /kT, and will be inves-

tigated in the next section.
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4.2 THE NONEQUILIBRIUM CASE

The discussion relating to the general case is necessarily more complex, since we

must deal with general expressions rather than evaluate integrals of known functions.

We shall see that to first order in g, the entire effect of the close collisions can be put

into one term that is a generalization of the Boltzmann collision integral. To this will

be added another accounting for the velocity dependence of the collective interaction.

Consider (99) for f,(Pl, PZ' k'

2 4 ie2 k " D1 2 Fl(PI) Fl(P2)
k 2  

(E-i2 (V 1 -V))

41rne 2 i f 8FI(PI) ' ( -1 I
2 -~ d~3 f(p 3 , P, k)

k (E -ik -( - )

- 8 Fl(P 2 ) S d , f(Pil, 3 ,,}. (128)

8P 2

In (128) we define

P k= d e,(P 1 P Q) (129)

and

4rie 2 kD 1 2 F 1 (P,) F1 (P2  ik'% 2

k (f-iS. (V1-V 2 )) 0

(130)

From(130)we see that small distances, 1%< 21 «XD' correspond to large wave
Ilarge 

wave
numbers, k >> XD1 , in the region of chief contribution of the transform. For large

k, (129) can be expanded in inverse powers of k by using the first term of (129) as the

first approximation in an iteration expansion,

4 .ne 2 .kD2Fi(PlI) F 1 (P 2 )
n2 PP 2P k) + i - -.-

k (-k. (V 1 -Vz))

( 2(47ne ZaF(l( F()2
\ k2  fr.dP 3  F1 P2

(- -V1_2) O I S - (v-

43



8F1 (Pz) d -k 1 3 F1 (Pj) F1 (P2 ) (31dp 3  -(131)

8P 2  1kV-v3) j+

Successive terms fall off as k 2 n

For k > kT/eZXD the right-hand side of (131) is of order (e 2 /kTXD) 2 , which

is of second-order smallness in g. As was pointed out in section 1. 2, the differ-

ence between P and 7 and Q and b becomes important only in the region lq-q

eX-D/kT. This fact implies that on the left-hand side of (131) we can replace Q
with - and P with p and know that in those regions in which this replacement is not

valid the function (131) is very small. Thus in q-space

2(Pl ' P2 QI-Q 2 ) -[ d-r 4 12 (QI-Q 2 -(VI-V 2 )T);F 1 (P1 ) FI(Pz)

1f I(p1 , T q-q'2 ) - Li 0 d'rT(q 1,--q 2,(v 1,--v 2 )T);F (Pj) F()1 (132)

where the error incurred will be of order (eZ/kTX D) Z  (The case of IQ---I ~
Ve 2XD/kT will be mentioned later.)

The final use for F 2 (x , x2 ) will be in the interaction term (I. T.) of the equation

for F l ,

OF, 0F(l -1.T.

-n IF [LPj{F l) F, (P,)+f (P 1 , D, I-?

0 0 dT + 1 2 (q 1 -q -(v-)T);F 1 (') F(P 2 J dx, (133)

where we have proved that there is no divergence for I- I - o.
The third term of (133) appears to diverge for lq-Ij - 0o, but we can easily

show that this divergence is cancelled by the first term. Consider the equation for

FI(P1 ) F(P-) in the region of small 12' that is, large Iqj_27,

0F2(Xl, x2 ) = [H;F2(x1,x 2 1 + 12 ;F2(x l x2 )]•

Using the usual solution methods and (Z6), we may obtain an expansion for small t12'

(PI) FI(P2 ) = Fl(- ) FI(-)

+ [S , 1?(q- 2 -(v"-)T) dr; F I(') q.F 1 (,P, P)]
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+ 0 ~l~~v~~zT)[5 d-r' 4i12( 1 c2 (v 7 2)v)F( 1  P2~)]

+ .(134)

Using this expansion in (133) in the region of large Iq~l, we see that the second term

of (134) cancels the divergent term of (133). The higher powers of p1 2 in (134) will con-

verge in the integral of (133) for I V I -
We see that (133), although a sufficient result, is in an inconvenient form because

the final term in the interaction term cancels the divergence in fI as [qI I - 0 and

the divergence in as q oo. We shall obtain another form that is equivalent

to (133) but that is more convenient in the kinetic equation for F 1 . 1

In the Appendix we derive the result (17) corresponding to the f 2 term in the inter-

action term of (133),

1624 SS F . (" 6 1 ) F (P). (135)

(2T)r 3  40 ai d I2+L+(ik 1 ) 2

k ~ ~~~ ~ d1 2+ +(k- 7d

The corresponding expression for the last term in (133) is obtained by expressing the

integral in k-space and is given by

162ne 4 8 6(. (v-dl))k" d12 F1(P1 ) Fl6 2 )" (136)
(2) 3  4  1 1

(Using the fact that L+(ik. Z) -- 0, we can easily see that the difference between

(135) and (136) converges for large Ik in agreement with (132).)

In the interaction term of (133) add and subtract the term

16Tr2 ne4 S dkdp"2  -
()3  2 ) vI-2)k* 2F , P

= n 5 ~4~; [~ dr +j 2 ~j~ )T); Fl(-j) Fj(p)]2 17

where

kD

and

D e2 F Ilxpe45
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The difference between (135) and (137) also converges for A - 00.
With these additions, the interaction term becomes

I. T. =n F [+ 1 F(PI) F 1 (P) - 1 2 ( 1 l-(v v)T); F 1(pj) F 1 P] 2

+ nI D ~ [S5O dr v (Pq2(7 2-( j 2 )r); F1 (P J) Fl(-)] dx2

+ n [2; I ( P2 ql-)

-q [4'; [ 0  dT q1- ( )) Fl(-) Fl(-)1}d 2  (138)

In order to combine the first three terms of (138), consider the equation for
F (p-D) F 1(pD) where

1- 2

T- 00

and

a = [H2+qI4 2;SD(x 1 , x2)1

for any O(xl, x 2 ). Here, SDT is the operator that projects the particles 1 and 2 back
along trajectories corresponding to a Debye-shielded collision.

By the familiar means, we have

D (i(P ) F 1(P2D) = [Ho +qD ~;F (P) F1(-pD)]

=[H ++ii 1 ;F1(pD) F, (pD)

+ [.p 2-I-i1 ;Fl (pD) F I(pD)] (140)

Since

I D-_11 -< e 2/XO

we can expand FI(PII) F 1 Pp), using (26), in terms corresponding to powers of
(e /kTXD),

F( F I(PD) % FI(P ) FI(P) + 5 vdT S- 2  F 1 (P)• (141)
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The difference DP - l1 is very small until the T-integration backs the particles to a

separation, - XD, so that we obtain in the integral of (141) only the asymptotic velocities,

d'r j2T)-IZQ-Q-V-V)T)} F (P ) Fi(P )1J. (142)

As in (132), this difference is small unless Iq-q21 > XD' in which case Q-- 4and '-p

(1QI-Q 2  ~ XD will be discussed later). Thus (141) becomes

+(p *D V F-,- 12, Fj,).

(143)

Using (143), we can obtain

S [L' 12 FIV() FtPZ)] dx2  S{ F 1 (P,) 1 (2)

-j'i Li0 dT , (q-, -(v-v,T); FI(,<) F,(<)]]

(144)

where the equality holds to first order in (e 2 /kTXD). Using (144) in (138), we have

I. T. = n D[;F ,pD) Fl(p-)] dx2

[ ,~f (-,-,ql-q 2 )]

- [+' [5' dT q 2 (+-l,, F1 (P) Fl(,)]} dx,. (145)

We may see from the following considerations that the first term of (145) is a

Boltzmann collision integral with a Debye-shielded interaction. The method used is due

to Bogoliubov. 
1 2

From the definition of

[.,++D;F(T) F(P] F 0.

Thus we set

[ ;F() F( x = ) F ) dd (146)
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and recognize that depends on q- only through - = q---" For the q-integration

set up a cylindrical coordinate system with the positive z-axis parallel to v- - - .

Denote the radius and polar angle by a and , respectively. Then

m "'F'i .AF 1 ) F,(P ) d
m2aD

-:,- 21 T~ d4 da a 00 dt a F1 PD) F I (pD).(17

From the two-body problem under consideration, PD(x I I XZ) and PD(x 1 , x.) are the pre-

collision momenta that will yield the state xI , x.. From this definition

S=-(148)

pD(xI, x2)j = Pl PD(xI' xZ) = P(

where p, and are those momenta that, as precollision momenta, will give Pl and

as a final momentum. For coordinates x and x 2 which are such that an interaction is

in progress, P and p are not equal. Only when the particles are separated by a

distance that is much greater than XD do P i and become equal.
Using (146)-(148) in (145), we have

52w ~ ~ ( l0~.. F~T l(~ F -)F1  )F 1 (-)) dip-, ada do,

(P2 )

(149)

which is a form of the Boltzmann collision integral with the Debye-shielded interaction.
Using (135), (137), (145), and (149) in (133), we obtain

8F1 (Xl) 0[H°
at = i;FI(XI )l

+ $O 00 5 IP-- p I-I (F,(pI)Fl(p*)_FI F II() ) dr, ada d+

(P2)

16w Zne 4 y d d.
(2w)eS 101 k41+L+(iT" 7) J
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(k -v)) k. d F(2) F(2). (150)

The collision integral is the same as that used by Allis 6 and by Spitzer and Hrm 2

insofar as they replace the Coulomb field with a Debye field in adapting the Boltzmann

theory to plasmas. It is convenient that the entire effect of close collisions is contained

in this term. This is consistent with the concept of the close collision and its analogy

with the Boltzmann gas discussed in section 1. 1.

The integral over k in (150) is the contribution to the interaction term which is due

to the deviation of the shielding cloud from the Debye shield. This is caused by the

nature of F and the velocity Vl, as can be seen from the fact that

2 k .

lim, L+(ik. -1 = lim k. dfi
Vl-0 + Vl-0-Ok. (Vv - )

kz 2 Fl(U) d

- (kT) 8u du(151)

For a distribution that is spherically symmetric the integral is real. For a Maxwellian

distribution (151) reduces to k /k Z , which makes the k integral of (150) zero.

If the distribution Fl(p) is not Maxwellian, the contribution of the integral over k

in (150) is of the Fokker-Planck form. If we define D0 and B ° in (5) we have

- 2 4 o - dpdkk aFI

0 16w ne __d __d __ __ 1
m(2r)3 2 (+L+(ik 'i)Iz ( ) 6(v- (vv))F 1 (a)"

Armed with solution (150), we are in a position to justify the assumptions (90),

(95), (132), and (142). We have shown explicitly that these assumptions are good for

'~1~I «RDZ

We can now show that the error introduced by these assumptions for jQ1-Q ~

is negligible. We are interested in an integral of F 2 (X1 , X2 ) over and . In this

integration consider a value of (-q)which is such that iQI-Qz ~ D (which also
means that Is-to ( 150" The nuber of paricles at this separation which have under-

gone a close collision in the past is given by the number of particles that would undergo
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a close collision in an inverse collision starting from the same spacial coordinates with

the velocities reversed. The probability for this is given by the solid angle that is

available for close collisions and that is given by A/R2, where A is the cross section

for close collision and R is the initial separation of the particles. For particles sepa-

rated by XD , this ratio is (e Z XD/kT)/X_ = eZ/kTXD. Since nothing radical happens for

these particles, for example, we do not predict a divergent result for their contribution,

we may say that the approximations (90), (95), (132), and (142) are valid for all those

situations that yield a significant contribution to the kinetic equation for F

As a final step we shall evaluate the I] -integration for B and D in (152), which

will leave these functions expressed in angular integrals. The liki -integration can be

performed in the general case as follows. Define

L'(i " - l) =- k 2L±(ik - l ) (153)

and note that does not depend on jkj only on the direction of k/k. We define

W((0, 4, Vl) 00 dkk 3 1ZL( (154) k2

0 ( Ikz+L,'(-. il)j Z (k 2+kD? ))(14

where 0 and 0 are the polar and azimuthal angles of k in k-space. W converges at

the upper limit as a result of the subtraction of the two terms, and the integral in (154)

can be evaluated by standard means to yield

W (0, Re . . (155)

In terms of W, the functions B and D can be written

- li 2 ne4 S V i r8 P2sine ne --~..~) 6(k~-v 1 )
m(r) 30 0 kF1()82

(156)
2 4 ~ 27r 7r

--=16w ne ' d sine)d 0W(, 4,) 6(Z" (-)) FI(-).
2 (2)3 J'2 j \k /' I v2112

For a spherically symmetric distribution F 1 (p), it is convenient to pick the z-axis of

the k-inte ration along the direction of 1 . For this case the azimuthal integration yields

2w, and B and D are expressed as one-dimensional integrals. The final evaluation

of these integrals must, of course, be made with a particular F 1 (V).

In the use of (150)-(156) the following should be noted. Although B and D6 are in

the form of k-,ker-Planck coefficients, they do not represent the complete contribution

to the dynax: d1 friction and the diffusion in velocity space. One method of treating

the Boltzmann collision integral is to expand the integral in a series of powers of
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deflections in velocity.2 ' 6 The coefficients of the first two powers of this expansion

will give additional contribution to the dynamical friction and the diffusion in velocity

space. The contributions (136) are due to the particular shape of the shielding cloud

and happen to be in the form of Fokker-Planck coefficients.
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V. SUMMARY

Equation (150) is the result that was sought. As a kinetic equation for Fl(p), it may

be considered accurate to first order in (e 2/kTXD). The use of the adiabatic hypothesis

has yielded the most general kinetic equation for FI; and insofar as the hypothesis holds,

this equation can be said to exist.

The form (150) is appealing because, although it is a new result, it contains terms

corresponding to those of various earlier treatments, the Boltzmann equation (3) and

the Fokker-Planck equation (5). (There is no Vlasov type of contribution for the uni-

form plasma.) Equation 3 was correct for close collisions and in error for grazing

collisions; and (5), the opposite. Equation 150 combines these two solutions and forms

a bridge between them.

Discussions of the solution of (150) will not be carried out here, since the various

terms in (150) correspond to earlier treatments. Spitzer and Harm 2 and Allis 6 have

discussed the Boltzmann collision integral with an assumed Debye-shielded interaction.8-10 1

Several authors 8 - 1 0 have obtained the term containing the integral over f 2 in (150).

This result was (17) mentioned in section 1. 2. The divergence in the kZ-integration is

cancelled by the last term of (150), although the other properties remain the same.

The solution of (150) is still complicated and must be subjected to other approxima-

tions. However, within the limitations mentioned above, (150) may be taken to be the

equation of evolution of F 1 , and these approximations of solution may be used and

analyzed in their own right. The ability to separate the approximations used in deriving

the equation from the approximations used in its solution aids greatly in understanding

the accuracy, meaning, and limitations of the analysis.
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APPENDIX

1

We shall carry out a derivation of the large -separation solution f2 which is due to

112
Dupree. We shall then show that Dupree's result can be put into the form obtained

by Lenard. 
10

Dupree considers (97) for f with the substitutions F S,. FI and Do -t as in

(66). We write = q-q and obtain

S l + m f(F 1  p2 ,'Ft 2 F ) 2

8F.t d6-, d I1; (qF-q1) f2 (6,'; S, F,)

aF 1 ( ) a p I ,iT q,; S'+ I---~~d'~(' (p~p~q,,s! F1)
+ a -p 2  5qj 3 2i 1 3 -Id

aq (q)- d 1 2 FI( l) F (2). (157)

This can be written

TI( I-aIT - 2L) f(T) = 5 A()d 1 FlCr7) Fl(P-) (158)

where L 1 and L 2 are Landau operators defined in (71) and operate on coordinate I and

coordinate 2, respectively. Note that L1 and L 2 commute.

The formal solution to (158) is

_0 (L I+L 2)TO - FI(Pp F(
1(PIP2,q) = O)d're q 44~) • Td21 1P

where we have taken the limit I - 00 in agreement with the discussion preceding (98).

It is easier to evaluate

08 f~ I ( j 1'

1

and to then compute fI from (157). Using (78) and (79) for the result of the

operator L i , we have
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(2 9  k d, d= 0i a dir s ~-da 2 e (a- 1+a- 2)T s dr2
_....(2w) 2 Y O" O d+ I +L (-Ir 2 ) -a ' +iz

-00i+P -2 1

-p k

k____ 2 ____ dp1 I{ +L+(a-I) ¢i +k1 1 lJ

0' ik vik. v

41rc 2k2 k dl2 F 1 (p,) 05(), (159)

where

-1 (ik..f2

Equation 159 is the form obtained by Dupree. The 5+ dp and L+ are defined in (78)

and (79). The 5_ dp and L_ are the same integrals with the path of integration going

under the poles.

As mentioned in connection with (80), the a-integration can be moved just to the

left of the imaginary axis and the T-integration carried out. This brings down a

(a- 1+ a-2 )-1 if we can assume Re a-2 < Re a-I (if not, carry through the following oper-

ation with a-1 and a-2 interchanged). For the same reasons and conditions that the

zeros of 1 + L+(0-) are in the left-half plane, the zeros of 1 + L_(-r) are also in the

left-half plane. Therefore, we close the (r2 in the right-half plane and have only the

contribution at ar2 = -Wl This yields

Cf ~ ~ 2 2 00~ ai+P da 11 . ___

Yl P'2k O 2 o - I+ La-) 4r-

2

mWp _ 8Fl(-)

, p d.1 1-
[I+ + +(a-)] [r-ik Vl] W - Sk. v I ¢- Sk.

k . dI FI(aIp FI"2. (160)

By algebraic manipulations (160) can be put into the form
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f I(Y ,0T_ .ci T+ do- 1_y d _
12op , -FISV 1 1 it. .-

"F(-) d k. d1 Fl(j) Fl(-). (161)r2 a- - ik. -

In the limit of very small

iCdr dd_ __2 .-- -- +n -io

A fik.v - ikv

o" do- d - i •v1

i+ o- ikv 1  o- -ik-vI

Using (162) in (161) with further algebra, we obtain

'-( ..,, ) - 2-2 QOdi+P do'
f2 -1p  r2 k ) d 6 2 d2rc

2 k 2  - i+P ar-ik-v (l+L+(r))(l+Ljo))

I +L (or))- ' .P 2 t".2 FI( ) F()
+ -V I v-I p

-2wi Y dr 6 (J. +ior) F (PI ) F (P

The first integral may be closed in the right-half plane with zero contribution because

there are no poles in this plane. (By reflection the zeros of I + L( o) are in the

right-half plane because the zeros of I + L_(-r) are in the left-half plane.)

We obtain, as a final result,

4wc 2  0i dr 1

k ' -i+A a- - i-.'V (l+L+r))(1+L_ (O))

dp2 6(k. '+ir) k.d 2 F (p) F1 (P2 )
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4 wc 2  1o- 1 *6 - Roul2 Fd(j F 1
k Tz 2d 12k 2 +i2

+ irc 2  1 2- 5dr, 6 (k.(-v)) k d1  F(P) F($) (163)
k2  1 +L+(ik.vl)l 2

where we use (162) and the fact that (I+L+(o))(1+L.(-)) = j1+L+ -) 2 for r that is pure

imaginary.

Fortunately the principal value term in (163) is even in k while the second term is

odd. Thus in the integral

2.M 1
dfCd P-f d'd2 (164)

n 12 f2 (P 1 'Vr2'q7= 2 )] dp;dq k -2 j pk., f 2 (jP 2~ p 14n 12 P I' P2'(2w)3p

we need only the second term.

Introducing (163) into (164), we obtain (17) for the evolution of a spacially homogene-

ous F 1 ,

F 1 (j 16 i~rnc ~ d k *- 2 d 2 F F 1 (6-)
at - (2w) k4  up II+L+(ik.v=-- -l)I 2 k d 1 2

Acknowledgment

The author wishes to express his appreciation to Professor William P. Allis, for

his patience and useful advice during the preparation of his thesis. He would also like

to thank Professor Thomas H. Dupree for interesting discussions of the material. He

would like to thank the National Science Foundation for support extended during the

course of this investigation.

56



References

1. J. Kirkwood and J. Poirier, J. Phys. Chem. 58, 591 (1954).

2. L. Spitzer, Jr. and R. Harm, Phys. Rev. §2, 977 (1953).

3. A. Vlasov, J. Exptl. Theoret. Phys. (U.S.S.R.).8, 291 (1938).

4. L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).

5. S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

6. W. P. Allis, Motions of Ions and Electrons, Handbuch der Physik, Vol. 21, edited
by S. Flflgge (Springer Verlag, Berlin, 1956), pp. 384-444; Technical Report 299,
Research Laboratory of Electronics, M.I.T., June 13, 1956.

7. R. Balescu, Phys. Fluids 3, 52 (1960).

8. C.Tchen, Phys. Rev. 114, 394 (1959).

9. N. Rostocker and M. Rosenbluth, Phys. Fluids 3, 1 (1960).

10. A. Lenard, Ann. Phys. 3, 390 (1960).

11. T. Dupree, Phys. Fluids 4, 696 (1961).

12. N. Bogobiubov, Problems of Dynamic Theory in Statistical Physics (Leningrad,
1946); Translation, L. Venters, AEC-tr-3852.

13. G. Baccus, J. Math. Phys. 1, 178 (1960).

14. J. Drummond, Plasma Physics (McGraw-Hill Book Company, Inc., New York, 1961),
Chapter 1.

15. Bateman Manuscript Project, California Institute of Technology, Tables of
Integral Transforms, Vol. 1 (McGraw-Hill Book Company, Inc., New York, 1954),
Chapter 7.

16. Bateman Manuscript Project, California Institute of Technology, Higher Transcend-
ental Functions, Vol. 2 (McGraw-Hill Book Company, Inc., New York, 1954).

57


